Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(3): e1011929, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457467

RESUMO

Synthetic biology dictates the data-driven engineering of biocatalysis, cellular functions, and organism behavior. Integral to synthetic biology is the aspiration to efficiently find, access, interoperate, and reuse high-quality data on genotype-phenotype relationships of native and engineered biosystems under FAIR principles, and from this facilitate forward-engineering strategies. However, biology is complex at the regulatory level, and noisy at the operational level, thus necessitating systematic and diligent data handling at all levels of the design, build, and test phases in order to maximize learning in the iterative design-build-test-learn engineering cycle. To enable user-friendly simulation, organization, and guidance for the engineering of biosystems, we have developed an open-source python-based computer-aided design and analysis platform operating under a literate programming user-interface hosted on Github. The platform is called teemi and is fully compliant with FAIR principles. In this study we apply teemi for i) designing and simulating bioengineering, ii) integrating and analyzing multivariate datasets, and iii) machine-learning for predictive engineering of metabolic pathway designs for production of a key precursor to medicinal alkaloids in yeast. The teemi platform is publicly available at PyPi and GitHub.


Assuntos
Bioengenharia , Engenharia Metabólica , Biologia Sintética , Engenharia Biomédica , Saccharomyces cerevisiae
2.
Phytopathology ; 111(7): 1064-1079, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33200960

RESUMO

Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option available.


Assuntos
Fusarium , Fusarium/genética , Filogenia , Doenças das Plantas , Plantas
3.
Nat Commun ; 11(1): 6197, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273470

RESUMO

Fungal polyketides display remarkable structural diversity and bioactivity, and therefore the biosynthesis and engineering of this large class of molecules is therapeutically significant. Here, we successfully recode, construct and characterize the biosynthetic pathway of bikaverin, a tetracyclic polyketide with antibiotic, antifungal and anticancer properties, in S. cerevisiae. We use a green fluorescent protein (GFP) mapping strategy to identify the low expression of Bik1 (polyketide synthase) as a major bottleneck step in the pathway, and a promoter exchange strategy is used to increase expression of Bik1 and bikaverin titer. Then, we use an enzyme-fusion strategy to directly couple the monooxygenase (Bik2) and methyltransferase (Bik3) to efficiently channel intermediates between modifying enzymes, leading to an improved titer of bikaverin at 202.75 mg/L with flask fermentation (273-fold higher than the initial titer). This study demonstrates that the biosynthesis of complex fungal polyketides can be established and efficiently engineered in S. cerevisiae, highlighting the potential for natural product synthesis and large-scale fermentation in yeast.


Assuntos
Vias Biossintéticas , Engenharia Metabólica , Policetídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Xantonas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Policetídeos/química , Xantonas/química
4.
mSphere ; 5(5)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938701

RESUMO

This article is to alert medical mycologists and infectious disease specialists of recent name changes of medically important species of the filamentous mold FusariumFusarium species can cause localized and life-threating infections in humans. Of the 70 Fusarium species that have been reported to cause infections, close to one-third are members of the Fusarium solani species complex (FSSC), and they collectively account for approximately two-thirds of all reported Fusarium infections. Many of these species were recently given scientific names for the first time by a research group in the Netherlands, but they were misplaced in the genus Neocosmospora In this paper, we present genetic arguments that strongly support inclusion of the FSSC in Fusarium There are potentially serious consequences associated with using the name Neocosmospora for Fusarium species because clinicians need to be aware that fusaria are broadly resistant to the spectrum of antifungals that are currently available.


Assuntos
Fusarium/classificação , Filogenia , Antifúngicos/farmacologia , Fusarium/efeitos dos fármacos
5.
Mol Plant Pathol ; 21(8): 1070-1087, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32573086

RESUMO

Fusarium graminearum is one of the most destructive plant pathogens worldwide, causing fusarium head blight (FHB) on cereals. F. graminearum colonizes wheat plant surfaces with specialized unbranched hyphae called runner hyphae (RH), which develop multicelled complex appressoria called infection cushions (IC). IC generate multiple penetration sites, allowing the fungus to enter the plant cuticle. Complex infection structures are typical for several economically important plant pathogens, yet with unknown molecular basis. In this study, RH and IC formed on the surface of wheat paleae were isolated by laser capture microdissection. RNA-Seq-based transcriptomic analyses were performed on RH and IC and compared to mycelium grown in complete medium (MY). Both RH and IC displayed a high number of infection up-regulated genes (982), encoding, among others, carbohydrate-active enzymes (CAZymes: 140), putative effectors (PE: 88), or secondary metabolism gene clusters (SMC: 12 of 67 clusters). RH specifically up-regulated one SMC corresponding to aurofusarin biosynthesis, a broad activity antibiotic. IC specifically up-regulated 248 genes encoding mostly putative virulence factors such as 7 SMC, including the mycotoxin deoxynivalenol and the newly identified fusaoctaxin A, 33 PE, and 42 CAZymes. Furthermore, we studied selected candidate virulence factors using cellular biology and reverse genetics. Hence, our results demonstrate that IC accumulate an arsenal of proven and putative virulence factors to facilitate the invasion of epidermal cells.


Assuntos
Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Triticum/microbiologia , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA-Seq
6.
Synth Syst Biotechnol ; 5(1): 11-18, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32021916

RESUMO

To accelerate the shift to bio-based production and overcome complicated functional implementation of natural and artificial biosynthetic pathways to industry relevant organisms, development of new, versatile, bio-based production platforms is required. Here we present a novel yeast-based platform for biosynthesis of bacterial aromatic polyketides. The platform is based on a synthetic polyketide synthase system enabling a first demonstration of bacterial aromatic polyketide biosynthesis in a eukaryotic host.

7.
Sci Rep ; 8(1): 12853, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150747

RESUMO

The natural red food colorants carmine (E120) and carminic acid are currently produced from scale insects. The access to raw material is limited and current production is sensitive to fluctuation in weather conditions. A cheaper and more stable supply is therefore desirable. Here we present the first proof-of-concept of heterologous microbial production of carminic acid in Aspergillus nidulans by developing a semi-natural biosynthetic pathway. Formation of the tricyclic core of carminic acid is achieved via a two-step process wherein a plant type III polyketide synthase (PKS) forms a non-reduced linear octaketide, which subsequently is folded into the desired flavokermesic acid anthrone (FKA) structure by a cyclase and a aromatase from a bacterial type II PKS system. The formed FKA is oxidized to flavokermesic acid and kermesic acid, catalyzed by endogenous A. nidulans monooxygenases, and further converted to dcII and carminic acid by the Dactylopius coccus C-glucosyltransferase DcUGT2. The establishment of a functional biosynthetic carminic acid pathway in A. nidulans serves as an important step towards industrial-scale production of carminic acid via liquid-state fermentation using a microbial cell factory.


Assuntos
Aspergillus nidulans/metabolismo , Produtos Biológicos/metabolismo , Carmim/metabolismo , Corantes de Alimentos/metabolismo , Animais , Produtos Biológicos/química , Vias Biossintéticas , Carmim/química , Corantes de Alimentos/química , Hemípteros/metabolismo , Metaboloma , Metabolômica/métodos , Policetídeos/metabolismo
8.
Insect Biochem Mol Biol ; 96: 51-61, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29551461

RESUMO

The chemical composition of the scale insect Dactylopius coccus was analyzed with the aim to discover new possible intermediates in the biosynthesis of carminic acid. UPLC-DAD/HRMS analyses of fresh and dried insects resulted in the identification of three novel carminic acid analogues and the verification of several previously described intermediates. Structural elucidation revealed that the three novel compounds were desoxyerythrolaccin-O-glucosyl (DE-O-Glcp), 5,6-didehydroxyerythrolaccin 3-O-ß-D-glucopyranoside (DDE-3-O-Glcp), and flavokermesic acid anthrone (FKA). The finding of FKA in D. coccus provides solid evidence of a polyketide, rather than a shikimate, origin of coccid pigments. Based on the newly identified compounds, we present a detailed biosynthetic scheme that accounts for the formation of carminic acid (CA) in D. coccus and all described coccid pigments which share a flavokermesic acid (FK) core. Detection of coccid pigment intermediates in members of the Planococcus (mealybugs) and Pseudaulacaspis genera shows that the ability to form these pigments is taxonomically more widely spread than previously documented. The shared core-FK-biosynthetic pathway and wider taxonomic distribution suggests a common evolutionary origin for the trait in all coccid dye producing insect species.


Assuntos
Carmim/metabolismo , Hemípteros/metabolismo , Pigmentação/fisiologia , Animais , Hemípteros/genética
9.
Nat Commun ; 8(1): 1987, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215010

RESUMO

Carminic acid, a glucosylated anthraquinone found in scale insects like Dactylopius coccus, has since ancient times been used as a red colorant in various applications. Here we show that a membrane-bound C-glucosyltransferase, isolated from D. coccus and designated DcUGT2, catalyzes the glucosylation of flavokermesic acid and kermesic acid into their respective C-glucosides dcII and carminic acid. DcUGT2 is predicted to be a type I integral endoplasmic reticulum (ER) membrane protein, containing a cleavable N-terminal signal peptide and a C-terminal transmembrane helix that anchors the protein to the ER, followed by a short cytoplasmic tail. DcUGT2 is found to be heavily glycosylated. Truncated DcUGT2 proteins synthesized in yeast indicate the presence of an internal ER-targeting signal. The cleavable N-terminal signal peptide is shown to be essential for the activity of DcUGT2, whereas the transmembrane helix/cytoplasmic domains, although important, are not crucial for its catalytic function.


Assuntos
Carmim/metabolismo , Membrana Celular/enzimologia , Retículo Endoplasmático/enzimologia , Glucosiltransferases/metabolismo , Hemípteros/metabolismo , Animais , Glucosídeos/metabolismo , Glicosilação , Domínios Proteicos , Sinais Direcionadores de Proteínas
10.
Sci Rep ; 6: 26206, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27193384

RESUMO

Biosynthesis of the black perithecial pigment in the filamentous fungus Fusarium graminearum is dependent on the polyketide synthase PGL1 (oPKS3). A seven-membered PGL1 gene cluster was identified by over-expression of the cluster specific transcription factor pglR. Targeted gene replacement showed that PGL1, pglJ, pglM and pglV were essential for the production of the perithecial pigment. Over-expression of PGL1 resulted in the production of 6-O-demethyl-5-deoxybostrycoidin (1), 5-deoxybostrycoidin (2), and three novel compounds 5-deoxybostrycoidin anthrone (3), 6-O-demethyl-5-deoxybostrycoidin anthrone (4) and purpurfusarin (5). The novel dimeric bostrycoidin purpurfusarin (5) was found to inhibit the growth of Candida albicans with an IC50 of 8.0 +/- 1.9 µM. The results show that Fusarium species with black perithecia have a previously undescribed form of 5-deoxybostrycoidin based melanin in their fruiting bodies.


Assuntos
Fusarium/metabolismo , Melaninas/biossíntese , Pigmentação , Antifúngicos/metabolismo , Vias Biossintéticas/genética , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Fusarium/genética , Expressão Gênica , Técnicas de Inativação de Genes , Genes Fúngicos , Concentração Inibidora 50 , Isoquinolinas/metabolismo , Família Multigênica
11.
Int J Food Microbiol ; 221: 29-36, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26803271

RESUMO

Fusarium langsethiae is a widespread pathogen of small grain cereals, causing problems with T-2 and HT-2 toxin contamination in grains every year. In an effort to better understand the biology of this fungus, we present a draft genome sequence of F. langsethiae Fl201059 isolated from oats in Norway. The assembly was fragmented, but reveals a genome of approximately 37.5 Mb, with a GC content around 48%, and 12,232 predicted protein-coding genes. Focusing on secondary metabolism we identified candidate genes for 12 polyketide synthases, 13 non-ribosomal peptide synthetases, and 22 genes for terpene/isoprenoid biosynthesis. Some of these were found to be unique compared to sequence databases. The identified putative Tri5 cluster was highly syntenic to the cluster reported in F. sporotrichioides. Fusarium langsethiae Fl201059 produces a high number of secondary metabolites on Yeast Extract Sucrose (YES) agar medium, dominated by type A trichothecenes. Interestingly we found production of glucosylated HT-2 toxin (Glu-HT-2), previously suggested to be formed by the host plant and not by the fungus itself. In greenhouse inoculations of F. langsethiae Fl201059 on barley and oats, we detected the type A trichothecenes: neosolaniol, HT-2 toxin, T-2 toxin, Glu-HT-2 and numerous derivatives of these.


Assuntos
Microbiologia de Alimentos , Fusarium/química , Fusarium/genética , Genoma Fúngico , Tricotecenos/análise , Sequência de Bases , Grão Comestível/microbiologia , Fusarium/isolamento & purificação , Fusarium/metabolismo , Noruega , Tricotecenos/metabolismo
12.
J Nat Prod ; 78(7): 1518-25, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26132344

RESUMO

We present the results from stable isotope labeled precursor feeding studies combined with ultrahigh performance liquid chromatography-high resolution mass spectrometry for the identification of labeled polyketide (PK) end-products. Feeding experiments were performed with (13)C8-6-methylsalicylic acid (6-MSA) and (13)C14-YWA1, both produced in-house, as well as commercial (13)C7-benzoic acid and (2)H7-cinnamic acid, in species of Fusarium, Byssochlamys, Aspergillus, and Penicillium. Incorporation of 6-MSA into terreic acid or patulin was not observed in any of six evaluated species covering three genera, because the 6-MSA was shunted into (2Z,4E)-2-methyl-2,4-hexadienedioic acid. This indicates that patulin and terreic acid may be produced in a closed compartment of the cell and that (2Z,4E)-2-methyl-2,4-hexadienedioic acid is a detoxification product toward terreic acid and patulin. In Fusarium spp., YWA1 was shown to be incorporated into aurofusarin, rubrofusarin, and antibiotic Y. In A. niger, benzoic acid was shown to be incorporated into asperrubrol. Incorporation levels of 0.7-20% into the end-products were detected in wild-type strains. Thus, stable isotope labeling is a promising technique for investigation of polyketide biosynthesis and possible compartmentalization of toxic metabolites.


Assuntos
Policetídeos/química , Algoritmos , Aspergillus/química , Fusarium/química , Marcação por Isótopo , Estrutura Molecular , Patulina/química , Pironas/química , Quinonas/química , Salicilatos/química
13.
Fungal Biol ; 119(7): 551-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26058531

RESUMO

The obligate ascomycete parasitic fungus Blumeria graminis f. sp. hordei (Bgh) has a unique lifestyle as it is completely dependent on living barley leaves as substrate for growth. Genes involved in inorganic nitrogen utilization are notably lacking, and the fungus relies on uptake of host-derived peptides and amino acids. The PTR2 transporter family takes up di- and tri- peptides in a proton coupled process and filamentous fungi typically have two or more di/tri peptide transporters. Here we show that Bgh appear to have one PTR2 that can restore dipeptide uptake in a Saccharomyces cerevisiae PTR2 deletion strain. The Bgh PTR2 gene is expressed in conidia and germinating conidia. During Bgh infection of barley the expression level of the BghPTR2 gene is high in the appressorial germ tube, low in the haustoria and high again during conidiation and secondary infection in the compatible and intermediate resistant interactions. BghPTR2 appears to be important for the initial establishment of fungal infection but not for uptake of di-tri-peptides at the haustorial interface. Based on the expression profile we suggest that BghPTR2 is active in internal transport of nutrient reserves and/or uptake of break down products from the plant surface during the early infection stages.


Assuntos
Ascomicetos/metabolismo , Dipeptídeos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ascomicetos/classificação , Ascomicetos/genética , Proteínas Fúngicas/genética , Hordeum/microbiologia , Proteínas de Membrana Transportadoras/genética , Filogenia , Doenças das Plantas/microbiologia , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo
14.
Anal Chem ; 87(13): 6520-6, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26020678

RESUMO

Filamentous fungi are a rich source of bioactive compounds, ranging from statins over immunosuppressants to antibiotics. The coupling of genes to metabolites is of large commercial interest for production of the bioactives of the future. To this end, we have investigated the use of stable isotope labeled amino acids (SILAAs). SILAAs were added to the cultivation media of the filamentous fungus Aspergillus nidulans for the study of the cyclic tetrapeptide nidulanin A. Analysis by UHPLC-TOFMS confirmed that the SILAAs were incorporated into produced nidulanin A, and the change in observed m/z could be used to determine whether a compound (known or unknown) incorporated any of the added amino acids. Samples were then analyzed using MS/MS and the data used to perform molecular networking. The molecular network revealed several known and unknown compounds that were also labeled. Assisted by the isotope labeling, it was possible to determine the sequence of several of the compounds, one of which was the known metabolite fungisporin, not previously described in A. nidulans. Several novel analogues of nidulanin A and fungisporin were detected and tentatively identified, and it was determined that these metabolites were all produced by the same nonribosomal peptide synthase. The combination of stable isotope labeling and molecular network generation was shown to very effective for the automated detection of structurally related nonribosomal peptides, while the labeling was effective for determination of the peptide sequence, which could be used to provide information on biosynthesis of bioactive compounds.


Assuntos
Marcação por Isótopo , Aspergillus nidulans/metabolismo , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas
15.
PLoS One ; 9(11): e112703, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25409087

RESUMO

Fusarium avenaceum is a fungus commonly isolated from soil and associated with a wide range of host plants. We present here three genome sequences of F. avenaceum, one isolated from barley in Finland and two from spring and winter wheat in Canada. The sizes of the three genomes range from 41.6-43.1 MB, with 13217-13445 predicted protein-coding genes. Whole-genome analysis showed that the three genomes are highly syntenic, and share>95% gene orthologs. Comparative analysis to other sequenced Fusaria shows that F. avenaceum has a very large potential for producing secondary metabolites, with between 75 and 80 key enzymes belonging to the polyketide, non-ribosomal peptide, terpene, alkaloid and indole-diterpene synthase classes. In addition to known metabolites from F. avenaceum, fuscofusarin and JM-47 were detected for the first time in this species. Many protein families are expanded in F. avenaceum, such as transcription factors, and proteins involved in redox reactions and signal transduction, suggesting evolutionary adaptation to a diverse and cosmopolitan ecology. We found that 20% of all predicted proteins were considered to be secreted, supporting a life in the extracellular space during interaction with plant hosts.


Assuntos
Fusarium/genética , Fusarium/fisiologia , Genes Fúngicos/genética , Hordeum/microbiologia , Transdução de Sinais/genética , Triticum/microbiologia , Fusarium/citologia , Fusarium/metabolismo , Genômica , Metaboloma/genética , Dados de Sequência Molecular , Oxirredução , Metabolismo Secundário , Especificidade da Espécie , Transcriptoma
16.
Microb Cell Fact ; 12: 31, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23557488

RESUMO

BACKGROUND: Fungal polyketides include commercially important pharmaceuticals and food additives, e.g. the cholesterol-lowering statins and the red and orange monascus pigments. Presently, production relies on isolation of the compounds from the natural producers, and systems for heterologous production in easily fermentable and genetically engineerable organisms, such as Saccharomyces cerevisiae and Escherichia coli are desirable. Rubrofusarin is an orange polyketide pigment that is a common intermediate in many different fungal biosynthetic pathways. RESULTS: In this study, we established a biosynthetic pathway for rubrofusarin in S. cerevisiae. First, the Fusarium graminearum gene encoding polyketide synthase 12 (PKS12) was heterologously co-expressed with the Aspergillus fumigatus gene encoding phosphopantetheinyl transferase (npgA) resulting in production of YWA1. This aromatic heptaketide intermediate was converted into nor-rubrofusarin upon expression of the dehydratase gene aurZ from the aurofusarin gene cluster of F. graminearum. Final conversion into rubrofusarin was achieved by expression of the O-methyltransferase encoding gene aurJ, also obtained from the aurofusarin gene cluster, resulting in a titer of 1.1 mg/L. Reduced levels of rubrofusarin were detected when expressing PKS12, npgA, and aurJ alone, presumably due to spontaneous conversion of YWA1 to nor-rubrofusarin. However, the co-expression of aurZ resulted in an approx. six-fold increase in rubrofusarin production. CONCLUSIONS: The reconstructed pathway for rubrofusarin in S. cerevisiae allows the production of a core scaffold molecule with a branch-point role in several fungal polyketide pathways, thus paving the way for production of further natural pigments and bioactive molecules. Furthermore, the reconstruction verifies the suggested pathway, and as such, it is the first example of utilizing a synthetic biological "bottom up" approach for the validation of a complex fungal polyketide pathway.


Assuntos
Proteínas Fúngicas/genética , Policetídeo Sintases/genética , Pironas/metabolismo , Saccharomyces cerevisiae/metabolismo , Aspergillus/enzimologia , Aspergillus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Fusarium/genética , Genes Fúngicos , Hidroliases/genética , Hidroliases/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Família Multigênica , Plasmídeos/genética , Plasmídeos/metabolismo , Policetídeo Sintases/metabolismo , Pironas/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
17.
Phytopathology ; 103(5): 400-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23379853

RESUMO

In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation to use other genus names, including teleomorphs, for species nested within this clade, and preserve the application of the name Fusarium in the way it has been used for almost a century. Due to recent changes in the International Code of Nomenclature for algae, fungi, and plants, this is an urgent matter that requires community attention. The alternative is to break the longstanding concept of Fusarium into nine or more genera, and remove important taxa such as those in the F. solani species complex from the genus, a move we believe is unnecessary. Here we present taxonomic and nomenclatural proposals that will preserve established research connections and facilitate communication within and between research communities, and at the same time support strong scientific principles and good taxonomic practice.


Assuntos
Fusarium/classificação , Plantas/microbiologia , Fusarium/genética , Filogenia , Doenças das Plantas/microbiologia
18.
Fungal Genet Biol ; 52: 20-31, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23357352

RESUMO

Fusarium (Hypocreales, Nectriaceae) is one of the most economically important and systematically challenging groups of mycotoxigenic phytopathogens and emergent human pathogens. We conducted maximum likelihood (ML), maximum parsimony (MP) and Bayesian (B) analyses on partial DNA-directed RNA polymerase II largest (RPB1) and second largest subunit (RPB2) nucleotide sequences of 93 fusaria to infer the first comprehensive and well-supported phylogenetic hypothesis of evolutionary relationships within the genus and 20 of its near relatives. Our analyses revealed that Cylindrocarpon formed a basal monophyletic sister to a 'terminal Fusarium clade' (TFC) comprising 20 strongly supported species complexes and nine monotypic lineages, which we provisionally recognize as Fusarium (hypothesis F1). The basal-most divergences within the TFC were only significantly supported by Bayesian posterior probabilities (B-PP 0.99-1). An internode of the remaining TFC, however, was strongly supported by MP and ML bootstrapping and B-PP (hypothesis F2). Analysis of seven Fusarium genome sequences and Southern analysis of fusaria elucidated the distribution of genes required for synthesis of 26 families of secondary metabolites within the phylogenetic framework. Diversification time estimates date the origin of the TFC to the middle Cretaceous 91.3 million years ago. We also dated the origin of several agriculturally important secondary metabolites as well as the lineage responsible for Fusarium head blight of cereals. Dating of several plant-associated species complexes suggests their evolution may have been driven by angiosperm diversification during the Miocene. Our results support two competing hypotheses for the circumscription of Fusarium and provide a framework for future comparative phylogenetic and genomic analyses of this agronomically and medically important genus.


Assuntos
DNA Polimerase II/genética , DNA Polimerase I/genética , Fusarium/genética , Filogenia , Sequência de Bases , DNA Polimerase Dirigida por DNA , Evolução Molecular , Fusarium/classificação , Fusarium/patogenicidade , Humanos , Subunidades Proteicas/genética
19.
Pol J Microbiol ; 62(4): 365-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24730130

RESUMO

A disk-diffusion method experiment assessed the impact of nanosilver on production of secondary metabolites (pigments) by the Fusarium culmorum fungus. Nanosilver colloidal particles in water have been obtained by the use of a method based on high voltage electric arcs between silver electrodes. The silver nanoparticles size in colloid ranged between 15 and 100 nm and 7, 35 and 70 ppm concentration. Nanosilver modifies the metabolism of the researched F. culmorum strain. Coming into contact with nanosilver colloids induces more intensive mycelia pigmentation correlated with nanosilver concentration levels. The performed analysis of metabolites indicates that under the influence of nanosilver fungi biosynthesise aurofusarin more intensively and the conversion of rubrofusarin to aurofusarin is intensified as compared to the control culture. Under the influence of nanosilver F. culmorum intensively biosynthesises an unidentified dye which shares structural features with aurofusarin but which is not produced by fungi in standard cultures.


Assuntos
Fusarium/efeitos dos fármacos , Fusarium/metabolismo , Nanopartículas/química , Pigmentos Biológicos/metabolismo , Prata/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Prata/química
20.
Int J Food Microbiol ; 155(3): 128-36, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22377171

RESUMO

Fusarium species produce a plethora of bioactive polyketides and nonribosomal peptides that give rise to health problems in animals and may have drug development potential. Using the genome sequences for Fusarium graminearum, F. oxysporum, F. solani and F. verticillioides we developed a framework for future polyketide synthases (PKSs) and nonribosomal peptides synthetases (NRPSs) nomenclature assignment and classification. Sequence similarities of the adenylation and ketosynthase domain sequences were used to group the identified NRPS and PKS genes. We present the current state of knowledge of PKS and NRPS genes in sequenced Fusarium species and their known products. With the rapid increase in the number of sequenced fungal genomes a systematic classification will greatly aid the scientific community in obtaining an overview of the number of different NRPS and PKS genes and their potential as producers of known bioactive compounds.


Assuntos
Fusarium/enzimologia , Genes Fúngicos , Peptídeo Sintases/genética , Policetídeo Sintases/genética , DNA Fúngico/genética , Fusarium/genética , Família Multigênica , Peptídeo Sintases/classificação , Filogenia , Policetídeo Sintases/classificação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...